Antiulcerogenic activity of some sesquiterpene lactones isolated from Artemisia annua

ARTICLE in PLANTA MEDICA · JULY 2002

8 AUTHORS, INCLUDING:

Mary A Foglio
University of Campinas
86 PUBLICATIONS 603 CITATIONS
SEE PROFILE

Marcia Aparecida Antonio
Universidade São Francisco
16 PUBLICATIONS 257 CITATIONS
SEE PROFILE

Rodney A F Rodrigues
University of Campinas
32 PUBLICATIONS 127 CITATIONS
SEE PROFILE

João Ernesto de Carvalho
University of Campinas
177 PUBLICATIONS 1,603 CITATIONS
SEE PROFILE

Available from: Rodney A F Rodrigues
Retrieved on: 02 July 2015
Abstract
Artemisinin 1, dihydro-epi-doxyartemauin B 2 and deoxyartemisinin 3 were isolated from the sesquiterpene lactone-enriched fraction obtained from the crude ethanolic extract of *Artemisia annua* L. These compounds were tested on ethanol and indomethacin-induced ulcer models. Compound 1 did not afford cytoprotection under the experimental models tested. Only compounds 2 and 3 decreased the ulcerative lesion index produced by ethanol and indomethacin in rats. These compounds did not demonstrate antiulcerogenic activity when tested on the ethanol-induced ulcer model, with previous administration of indomethacin, suggesting that the antiulcerogenic activity is a consequence of prostaglandin synthesis increase.

Key words
Artemisia annua · Asteraceae · antiulcer activity · sesquiterpenes

Introduction
Artemisia annua L. (Asteraceae) has received much attention due to the antimalarial activity of artemisinin 1 (Fig. 1), a sesquiterpene lactone with an endoperoxide group [1]. Sesquiterpene lactones are common in most tribes of Asteraceae, with more than 4000 known structures. A diversity of bioactivities has been reported for this class of compounds, such as anti-inflammatory, antitumor, antiulcerogenic, cytotoxic, diuretic and cardiotonic, among others [2]. The genus *Artemisia* is widely known for its sesquiterpene lactone contents which have been mentioned as cytoprotective agents against the development of peptic ulcers [3]. The antiulcerogenic activity of many sesquiterpene lactones has been attributed to their α-methylene-γ-lactone moiety (3). The guaianolide dehydroeucodine isolated from *Artemisia douglasiana* Besser (Asteraceae) demonstrated cytoprotective activity by two different pathways, involvement of SH-compounds as well as the mucus synthesis [4].

The present study was undertaken to evaluate the antiulcerogenic activity and to determine the probable pharmacological mechanism of three sesquiterpene lactones isolated from *Artemisia annua* L.
Materials and Methods

Plant material and fractionation
Artemisia annua L. leaves (hybrid CPQBA 2/39 x PL5) were collected from the experimental field of CPQBA/UNICAMP. Voucher specimen is deposited at CPQBA/UNICAMP under registration number 229. This material was allowed to dry under air circulation (40 °C) and ground for use. The resulting powder (500 g) was submitted to dynamic maceration with ethanol during 4 hours (this procedure was repeated three times). Concentration of the extracts under reduced pressure gave 108 g of crude ethanolic extract (22% yield).

A 10% lead acetate solution (1 L) was added to the crude ethanolic extract (108 g) dissolved in ethanol (100 mL). This mixture was allowed to stand at room temperature for 30 minutes and filtered. The filtrate was extracted with chloroform (3 x 350 mL), dried over MgSO4, filtered and dried under vacuum affording the sesquiterpene lactone enriched fraction (10 g - 9.3% yield) [5].

The sesquiterpene enriched fraction (10 g) was purified on successive column chromatography using silica gel (Merck 7734) (5 x 60 cm) with hexane/ethyl acetate (99:1), Rf 2: 0.65 between 500 – 950 mL, [α]D20 +49.96° (c 0.025 g/mL CHCl3); hexane/ethyl acetate (99:2), Rf 3: 0.61 between 1000 – 1700 mL, [hexane/ethyl acetate (99:3), [α]D20 -149.8° (c 0.045 g/mL CHCl3); Rf 1: 0.57 between 1750 – 2550 mL, [α]D20 + 80.93° (c 0.025 g/mL CHCl3).

Fractions were monitored by thin layer chromatography, eluent hexane/dichloromethane/methanol (20:79:1), detection anisaldehyde reagent. The physical and spectral data (mass, 1H-NMR, 13C-NMR) of compounds 1 – 3 were consistent with those of artesiminin [6], deoxyartemisinin [6] and dihydro-epi-dihydroartesiminin B [7].

Chromatographic analysis
The GC/MS analysis were carried out using a HP-5890/5970 system equipped with a J&W Scientific DB-5 fused capillary column (25 m x 0.2 mm x 0.33 μm). Temperature program was 40 °C (5 °C/ min) – 300 °C (10 min). Injector 250 °C, detector 300 °C. Helium was used as carrier gas (0.7 bar, 1 mL/min). The MS were taken at 70 eV. Scanning speed was 0.84 scans/s from 40 to 550. Sample volume was 1 μL. Split: 1: 40.

Animals
Male Wistar rats (200 – 300 g), purchased from Animal Experimental Care Center of Campinas State University, were employed in all pharmacological experiments. These animals were maintained under standard conditions of light cycle (12 hours light, 12 dark) and temperature (23 ± 2 °C), for at least 7 days before the experiments. Animal’s welfare guidelines were adopted during maintenance period and experimentation [8], [9].

Indomethacin-induced ulcer
Male Wistar rats (200 – 250 g), fasted for 24 hours, with free access to water, were divided in at least three groups, containing 4 – 7 animals, according to the respective treatment employed.

After 30 minutes of oral treatment, indomethacin (30 mg/kg) was administrated subcutaneously to all groups. After four hours, the animals were sacrificed, their stomachs were removed, and opened along the greater curvature [10]. The ulcerative lesion index of each animal was calculated by adding the following values [11]:

- Loss of normal morphology 1 point
- Discoloration of mucosa 1 point
- Mucosal edema 1 point
- Hemorrhages 1 point
- Petechial points (until 9) 2 points
- Petechial points (more than 10) 3 points
- Ulcers up to 1 mm number of ulcers x 2 points
- Ulcers greater than 1 mm number of ulcers x 3 points
- Perforated ulcers number of ulcers x 4 points

Ethanol-induced ulcer
Male Wistar rats (200 – 250 g), fasted for 24 hours, with free access to water, were divided in groups of 5 – 6 animals, according to the respective treatment employed.

After 30 minutes of oral treatment with saline, carbenoxolone, and compounds 1 – 3, each animal received, 1 mL of absolute ethanol orally. After one hour, the animals were sacrificed and their stomachs were removed and opened along the greater curvature [12]. Ulcers were evaluated as above [11].

Determination of the role of prostaglandins in cytoprotection
The animals were divided in groups of 3 – 5 animals, according to the respective treatment. The control group received an intraperitoneal injection of saline solution, and the others an injection of indomethacin (5 mg/kg). After thirty minutes, all animal groups received the respective treatment orally. After one hour, the animals were orally administrated with 1 mL of absolute ethanol. These animals were sacrificed one hour later and their stomachs were removed, and opened along the greater curvature [13]. Ulcers were evaluated as above [11].

Statistical analysis
The results were expressed as mean ± SEM and the individual data were submitted to one way variance analysis with critical range at p < 0.05 and afterwards to Duncan’s test with the same critical range.

Results and Discussion
Previously we demonstrated that the resulting enriched sesquiterpene fraction from Artemisia annua L. crude ethanolic extract inhibited the ulcerative lesion index in all experimental models tested, in rats. The results mentioned therein suggested that the antiulcerogenic properties were afforded by cytoprotective mechanisms as result of active principles that increase the gastric mucosa prostaglandin level [14]. Prostaglandins released in the stomach protect the gastric mucosa by acid secretion decrease, mucosa blood flow, bicarbonate, and mucus production increase [15].

In previous work we determined that the enriched sesquiterpene fraction had ulcer inhibition maximized at dose levels between 50 and 125 mg/kg [14]. Therefore, a dose of 100 mg/kg for compounds 1 – 3 would ensure an effect if the antiulcer activity re-
results from one of the mentioned compounds, since they were ob-
tained by chromatographic purification of the enriched sesqui-
terpenic lactone fraction. Further bioassays were undertaken to
evaluate the cytotoxicity of these substances. On indomethacin and ethanol-induced ulcer model the, artemisinin 1
(100 mg/kg), did not inhibit the ulcerative lesion index, when admin-
istered orally (Table 1). When evaluated on the ethanol-induced
model, artemisinin 1 (100 mg/kg) slightly increased the
ulcerative lesion index. This can probably be explained due to
the endoperoxide group present in the molecule which generates
active oxygen species, one of the major causes for microcirculatory
disturbance [16]. Otherwise compounds 2 and 3 inhibited the
ulcerative lesion index on both experimental ulcer models. Dihydro-
epoxyartemisinin B 2 administrated orally (100 mg/kg) on the
indomethacin ulcer model, inhibited the ulcerative lesion index
by 62.7% (Table 1). On the ethanol ulcer model, compound 2, pre-
sented dose-dependent inhibition of the ulcerative lesion index,
with an ED50 value of 55.6 mg/kg (Table 2). Analogously, deoxy-
artemisinin 3 afforded an ED50 value of 87.5 mg/kg (Table 2).

The dose-response evaluation on the ethanol-induced ulcer
model demonstrated that compound 2 was more potent than
compound 3. This is the first mention of a pharmacological activ-
ity for dihydro-epiartemisinin B 2 since it was first isolated and
identified [7].

The previous treatment with indomethacin, a cyclooxygenase
inhibitor, blocked the antiulcerogenic activity of compounds 2
and 3.

| Table 1 Effect of oral administration of cimetidine, compound 1 and compound 2 on indomethacin induced ulcer model and effect of oral admin-
istration of carbenoxolone and compound 1, on ethanol induced ulcer model |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Cimetidine</td>
</tr>
<tr>
<td>Compound 1</td>
</tr>
<tr>
<td>Carbenoxolone</td>
</tr>
<tr>
<td>Compound 1</td>
</tr>
<tr>
<td>Cimetidine</td>
</tr>
<tr>
<td>Compound 2</td>
</tr>
</tbody>
</table>

| ANOVA F(1,10) = 14.04, p < 0.001. Duncan’s test: b p < 0.001. |
| ANOVA F(2,10) = 16.51, p < 0.001. Duncan’s test: p < 0.01. |
| ANOVA F(3,10) = 15.04, p < 0.001. Duncan’s test: * p < 0.01. |

<table>
<thead>
<tr>
<th>Table 2 Effect of oral administration of carbenoxolone (100 mg/kg), compound 2 and compound 3, in different doses, on ethanol induced ulcer model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Carbenoxolone</td>
</tr>
<tr>
<td>Compound 2</td>
</tr>
<tr>
<td>Carbenoxolone</td>
</tr>
<tr>
<td>Compound 3</td>
</tr>
<tr>
<td>Compound 3</td>
</tr>
<tr>
<td>Compound 3</td>
</tr>
</tbody>
</table>

| ANOVA F(4,30) = 23.29 p < 0.001. Duncan’s test: * p < 0.05; ** p < 0.001. |
| ANOVA F(2,30) = 14.11 p < 0.001. Duncan’s test: b p < 0.01; c p < 0.001. |

| Table 3 Effect of oral administration of compound 2 and compound 3, on ethanol induced ulcer model, with previous administra-
<table>
<thead>
<tr>
<th>tion of indomethacin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Saline</td>
</tr>
<tr>
<td>Carbenoxolone</td>
</tr>
<tr>
<td>Saline + indomethacin</td>
</tr>
<tr>
<td>Compound 2 + indomethacin</td>
</tr>
<tr>
<td>Compound 3 + indomethacin</td>
</tr>
</tbody>
</table>

| ANOVA F(4,50) = 15.04 p < 0.01. Duncan’s test: * p < 0.01; b p < 0.001. |

Downloaded by: Dot. Lib Information. Copyrighted material.
and 3 on ethanol ulcer model. (Table 3). These results suggest that the antulcerogenic activity of compounds 2 and 3 have a straight relationship with an increase of prostaglandin synthesis [14].

References

8. Guide for the Care and Use of Laboratory Animals 1996. NIH Publication n° 82–23 revised
15. Felix WL, Miller JC, Guth PH. Dissociated effects of misoprostol on gastric acid secretion and mucosal blood flow. Digestive Diseases and Sciences 1986 (Supplement Feb); 31 (2): 865–905